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Abstract

In this work, we investigate the generation of high-fidelity,
audio-driven 3D Gaussian talking heads from monocular
videos. We present DGTalker, an innovative framework de-
signed for real-time, high-fidelity, and 3D-aware talking
head synthesis. By leveraging Gaussian generative priors
and treating the task as a latent space navigation prob-
lem, our method effectively alleviates the lack of 3D infor-
mation and the low-quality detail reconstruction caused by
the absence of structure priors in monocular videos, which
is a longstanding challenge in existing 3DGS-based ap-
proaches. To ensure precise lip synchronization and nu-
anced expression control, we propose a disentangled latent
space navigation method that independently models lip mo-
tion and talking expressions. Additionally, we introduce an
effective masked cross-view supervision strategy to enable
robust learning within the disentangled framework. We con-
duct extensive experiments and demonstrate that DGTalker
surpasses current state-of-the-art methods in visual quality,
motion accuracy, and controllability.

1. Introduction

Building an audio-driven 3D head avatar from a monocular
video is a valuable research topic and has many different ap-
plications, such as gaming, filmmaking, holographic com-
munication, etc. It often has high requirements, including
the visual quality from different viewpoints, the rendering
speed, and the synchronization between audio and video.
Previous works [2, 8, 15, 16, 23, 24, 42, 44] build the
3D head avatar with neural radiance field (NeRF) [28], uti-
lizing its high-fidelity view synthesis capabilities. However,
despite various improvements, the NeRF-based methods are
still limited by relatively low rendering efficiency, making
it difficult for them to be applied to tasks with real-time ren-
dering requirements. Recently, a few works [6, 11, 25, 43]
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Figure 1. A brief illustration of DGTalker. We reformulate the
problem as disentangled latent space navigation. We adopt dual
encoders to extract a lip vector and an expression vector from the
audio input. These two vectors, together with the canonical code,
are then linearly combined to form the final latent code, which is
then sent to the personalized generator for synthesis.

have started to use 3D Gaussian Splatting (3DGS) [21] for
head avatar modeling. While 3DGS provides efficient and
flexible explicit 3D representation, it typically requires a
wide range of viewpoints to learn 3D geometry. These
viewpoints, which are difficult to obtain from monocular
videos, pose significant practical challenges. An insight-
ful solution is to leverage the generative prior learned from
large-scale data to construct a more expressive representa-
tion with viewpoint generalization capability, as explored
in NeRF-based methods [2, 23]. However, a key chal-
lenge arises from the fact that the latent space of generative
methods is inherently entangled with multiple identities and
global facial expression variations, whereas the audio pri-
marily correlates with local lip movements. This mismatch
hampers effective model learning when the full facial image
is used as supervision, as in previous methods, and results
in suboptimal audio-visual synchronization.

To this end, we introduce DGTalker, a novel framework
leveraging Gaussian generative priors [ 18, 22] for modeling
the audio-driven 3D Gaussian head avatar. To seamlessly
integrate with generative priors, we reformulate the task as
a latent space navigation problem. We propose a novel dis-
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entangled navigation method, leveraging the linear interpo-
lation property of the latent space [7, 18, 19, 22], which en-
ables continuous and smooth synthesis transitions between
two latent codes, thereby alleviating the unequal mapping
between audio and lip/expression movements. For a cer-
tain identity, we propose to learn an anchor vector with a
canonical expression, along with an expression vector, and
a lip vector which independently model the variations of ex-
pressions (upper-face motions) and lip motions (lower-face
motions). In particular, we adopt a dual-encoder architec-
ture and decompose the lip and expression vectors into two
sets of learnable, orthogonal blendshape bases, to facilitate
more effective training. For audio-driven talking head syn-
thesis, we first map the audio signals to coefficients corre-
sponding to these two orthogonal groups of blendshapes.
These components are then fused with a global canonical
latent vector via linear interpolation to obtain the final la-
tent vector, which is subsequently fed into the generator to
synthesize the 3D talking head avatar. A brief overview of
the principle of DGTalker is illustrated in Fig. 1.

To effectively learn disentangled expression and lip com-
ponents, we further introduce a novel masked cross-view su-
pervision strategy. Specifically, during training, we prompt
the generator to synthesize a non-existent 3DGS head by
combining the lip latent code from one audio and the ex-
pression latent code from another. Then, we render the
3DGS head under each audio-correlated viewpoint, and ap-
ply region-specific supervision focusing only on the up-
per face or the lower face, respectively. Based on the
above designs, DGTalker enables high-fidelity rendering
across a wide range of viewpoints, achieves superior mo-
tion synchronization accuracy, and provides each compo-
nent with well-defined semantic meaning, which leads to
stronger controllability. We conduct extensive experiments
and demonstrate that DGTalker outperforms several state-
of-the-art methods in both quantitative and qualitative eval-
uations. Additionally, the ablation studies further validate
the effectiveness of the proposed tailored designs. The main
contributions of our paper are summarized as follows:

* We propose to leverage Gaussian generative priors and
formulate the audio-driven Gaussian talking head recon-
struction as a latent space navigation task.

* We propose a novel disentangled framework that decom-
poses the high-dimensional latent vector into a global
canonical vector, an expression vector, and a lip vector.

* We propose an effective masked cross-view supervision
strategy that enables the learning of disentangled expres-
sion and lip components.

* Experiments demonstrate that the proposed DGTalker
outperforms state-of-the-art methods and exhibits supe-
rior disentangled controllability.

2. Related Work

3D Talking Head Synthesis. Reconstructing and ani-
mating talking heads by arbitrary audio is an active re-
search topic [2, 16, 26, 32, 39]. In the early stages,
NeRF [28] was introduced as a 3D representation of the
talking head, enabling photorealistic rendering and person-
alized talking style through person-specific training. Earlier
NeRF-based works [16, 26, 35, 42] suffer from the expen-
sive cost of vanilla NeRF. Although RAD-NeRF [15] and
ER-NeRF [24] have improved efficiency with grid-based
NeRF [29], real-time rendering of 3D talking head remains
challenging. Recently, 3DGS [21] have been explored for
this field as a novel 3D representation. GaussianTalker [11]
improves the responsiveness of Gaussian points to audio
by integrating cross-attention mechanisms at the cost of
slightly reduced inference speed. TalkingGaussian [25] im-
proves motion accuracy via a face-mouth decomposition
module but introduces novel views with more undesired ar-
tifacts. Concurrently, EmoTalkingGaussian [6] achieves di-
verse emotional talking heads utilizing a curated speech au-
dio dataset, still leaving the issue of novel view reconstruc-
tion challenges unexplored. GaussianSpeech [1] achieves
finer-grained modeling quality by utilizing their proposed
multi-view talking head dataset. However, it is limited to
only a few identities, which restricts its applicability.
GANs Editing and 3D-aware GANs. In response to the
recent emergence of GANs, a wide range of studies have ex-
plored various approaches for tasks such as editing, super-
resolution, and image inpainting. For facial editing, In-
terfaceGAN [36] leverages the smooth variation of out-
put images through interpolation in the latent space, en-
abling controllable editing by identifying hyperplanes cor-
responding to specific attributes. Subsequent works fur-
ther explore identity-specific editing [30, 45] and tempo-
rally consistent editing for videos [14]. However, these
methods typically focus on coarse attribute manipulations
(e.g., age or smile intensity) and struggle to achieve pre-
cise fine-grained facial dynamics from audio signals. Mean-
whle, 3D-aware GANs, which incorporate 3D representa-
tions, have emerged with similar latent space properties.
EG3D [7] first introduced NeRF [28] as a 3D representation
and applied a super-resolution network to the rendered fea-
tures, resulting in 3D inconsistencies. Although subsequent
works [10, 31, 38, 41] proposed various methods to improve
3D consistency, they are still constrained by the slow infer-
ence speed inherent to NeRF representation. Recently, GS-
GAN [18] and GGhead [22] improved rendering speed and
ensured 3D consistency by utilizing 3DGS as the genera-
tor’s output, enabling direct rendering without the need for
a neural network during rendering, which presents greater
potential for real-time, speech-driven 3D talking head syn-
thesis.

Talking Head With Generative Priors. Recently, two
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methods have emerged that leverage generative priors for
synthesizing talking heads, which are most closely related
to our work. HFA-GP [2] learned a low-dimensional latent
subspace spanned by audio in the whole latent space of a
3D-aware GAN. They neither disentangle identity-specific
region from the universal latent space nor address the in-
herent mismatch between audio and the latent representa-
tion, leading to suboptimal audio-lip synchronization. Sub-
sequently, Talk3D [23] improved the audio-lip synchroniza-
tion by introducing an audio-guided attention U-Net to per-
form motion compensation on the 3D representations gener-
ated by 3D-aware GANs. However, it not only increased the
computational burden but also failed to ensure multi-view
consistency, as the motion compensation is learned inde-
pendently from the generator. How to better leverage gen-
erative priors for achieving audio-lip synchronization across
diverse viewpoints remains an open research question.

3. Method

In this section, we first briefly review the Gaussian genera-
tive priors in Sec. 3.1. Then, we explain the proposed dis-
entangled navigation design, along with the corresponding
two sets of blendshapes and dual encoders in Sec. 3.2 and
detail our training strategy, which includes the personalized
generator, canonical code learning, and the Masked Cross-
view Supervision scheme, in Sec. 3.3. Finally, we demon-
strate our superior controllability in Sec. 3.4.

3.1. Gaussian Generative Priors

Our approach builds upon 3D-aware Gaussian GANSs,
which enable the generation of real-time, high-fidelity,
and multi-view consistent Gaussian heads from randomly
sampled latent vectors. The state-of-the-art method,
GGhead [22] employs 3DGS primitives as the generator’s
output to alleviate the computational bottleneck and 3D in-
consistencies introduced by the super-resolution module. In
particular, given a latent vector w € R5!2 and a standard
front-view pose 7y as pose-conditioning, the GGhead gen-
erator G predict a sufficient and compact 3DGS head repre-
sentation. An image [ is then rendered using the tile-based
rasterizer R under the desired camera viewpoint 7,

I =R(G(w,m), ). (1)

Given a sequence of N video frames V = {I,})_; of a
specific identity, each frame I,, is associated with an audio
feature f,, and a camera parameter 7,,. As 7, is the ground
truth, our goal is to seek a function JF conditioned on the au-
dio feature f,, that predicts the latent code w,,. To simplify
notation, we omit the subscript n in the subsequent section.

3.2. Disentangled Navigation Design

An overview of DGTalker is shown in Fig. 2. Leveraging
the smooth variation of the output through interpolation in

the latent space, we define an anchor w,, and two orthogo-
nal vectors Aweyp, Awyip in the latent space. These compo-
nents independently encode a global specific identity with
a canonical expression, dynamic talking expression varia-
tions (upper-face motion), and dynamic lip motion varia-
tions (lower-face motion), respectively. This can be written
as,

W = Wean + Awexp + Awlipa ()

where Aweyp, and Awyip, should be controlled by audio, de-
termining how far to move from we¢a,. To further facilitate
effective training, we design two sets of learnable orthogo-
nal latent blendshapes, Beyp, Biip instead of vectors. Specif-
ically, for By, with k; vectors as By, = [bll, - ,bﬁﬁ] €
RF1%512 in the latent space, where each vector represents
distinct lip motion variations, the final corresponding lip
vector Awyp is obtained by linear blending. The same pro-
cess applies t0 Bexy = [b5,---,bf ] € RF*512 with k,
vectors, and final formulation can be written as,

ke k;
W = Wean + Z apby + Z aﬁcbi, 3)
k=1 k=1

where o}, denotes the coefficient corresponding to the basis
vector by with x € {e, [}, indicating the intensity variations
of expression and lip blendshapes, respectively. We denote
the coefficient vector as a, = [af, - - ,ozz*]T € RY>F~ for
simplicity. We then utilize dual-encoders to regress two co-
efficient vectors from audio features f. To better control the
audio-independent action of eye blinking, we follow previ-
ous works [24, 25] using AU45 [34] to describe the degree
of eye closure, denoted as £. This is further incorporated
into the expression encoder, leading to the final formulation

ae = Ec(f,£), a1 = E(f).
3.3. Disentangled Learning

Personalized Generator and wg,, Learning. Directly
achieving high-fidelity reconstruction from the large-scale
pretrained generator is challenging due to the distribu-
tion discrepancy between real images and generative pri-
ors [14, 23, 33]. Hence, we first learn a personalized gen-
erator by designing a variant of pivotal fine-tuning [33].
Specifically, for each training image, we decompose the
corresponding latent vector into a global we,, and a frame-
specific Wirame. TO oObtain a neutral wc,, with more accurate
geometry, we jointly optimize these latent vectors under the
ground-truth camera parameters. Then, we fix the latent
vectors and fine-tune the generator using the same objec-
tives as in PTI. Finally, we discard the wg.me, and retain
and freeze the personalized generator along with the wca,
for subsequent use.

Masked Cross-view Supervision Strategy. To ensure that
our disentangled components can be effectively learned,
we propose a novel Masked Cross-View Supervision(MCS)
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Figure 2. Overall Framework of DGTalker. We design a disentangled navigation framework consisting of an anchor weq», Which encodes
a global canonical expression for a specific identity, and two sets of learnable, orthogonal blendshapes Beyp, Bijp containing k. and k;
vectors, respectively. Each vector corresponds to a disentangled variation in upper/lower face expressions. The input audio is used to
regress the coefficients of these blendshapes. To ensure effective learning, we randomly feed the encoder with different audio inputs and
render the output images from two viewpoints. The corresponding masked ground-truth (GT) images are then used for supervision.

training strategy. Specifically, at each training iteration,
with probability p, we randomly sample a frame pair, de-
noted as I, I», along with different viewpoints 7y, 7, au-
dio features f;, fo and eye actions &1, £>. The non-existent
w12 in the training set is derived as,

W12 = Wean + Ee(fla gl)Bexp + El (fQ)Blip~ (4)

We then render the generated 3DGS head from w5 twice,
under viewpoints 71 and 79, respectively, and supervise the
two renderings using only the upper-face region from Iy
and only the lower-face region from I». To avoid distri-
butional shift between the learned model and real face data,
we disable MCS with a probability of 1 — p. The Training
objectives L. are composited by pixel-wise Lo loss and
perceptual loss Ly pips.

3.4. Controllability

Thanks to our carefully designed disentangled latent space
navigation method and the masked cross-view supervision
training strategy, the learned components possess well-
defined semantic meanings, which will be discussed in de-
tail in Sec. 4. This enables our DGTalker to generate diverse
talking expressions for the same speech content, offering
superior controllability over other methods. Fig. 3 shows
an example where the same utterance is spoken by the same
identity with different talking expressions. In the “May”
example, we present normal speech alongside speech with

closed eyes. In the “Macron” example, we demonstrate nor-
mal speech contrasted with speech with a shocked expres-
sion.

(b) The first row shows nor-
mal speech, while the second
row shows shocked speech
for the same utterance.

(a) The first row shows nor-
mal speech, while the second
row features the same speech
with closed eyes.

Figure 3. Our DGTalker shows excellent controllability on two
different identities.

4. Experiment

In this section, we first introduce three experimental set-
tings. Then, we show quantitative and qualitative evaluation
for these experimental settings. Finally, we perform analy-
sis and ablation study to analyze the key elements of our
approach.

11082



Ground
Truth

|
|
|

ER-Nerf

Gaussion
Talker

Talking
Gaussian

HFA-GP*

Ours

Ground Truth GaussionTalker

TalkingGaussian

Figure 4. Qualitative comparison of reconstruction quality and visual-audio synchronization under the self-reconstruction setting. We

remove the background to allow for more intuitive and direct comparisons.

Our method generates more precise and complete details

compared to recent state-of-the-art approaches [2, 11, 24, 25]. Please zoom in for details.

4.1. Experimental Settings

Dataset and Pre-processing. We evaluate our method on
4 publicly available videos used in prior works [16, 24, 42],
as well as 4 videos from the HDTF dataset [47], resulting
in a total of 8 clips. Each video contains approximately
6,500 frames at 25 FPS, with a balanced gender distribu-
tion. Each video is cropped and resized to 512 x 512. For
each frame of the video, we follow HFA-GP [2] to obtain
camera parameters, ensuring consistency with the genera-
tor scale. Finally, we employ the off-the-shelf background
matting network MODNet [20] to remove the background
following GGhead [22]. We split each video into training
and testing sets with a ratio of 10:1, following the same pro-
tocol as previous works.

Implementation Details. For the personalized generator
and canonical code training, both the optimization and fine-
tuning stages are performed with a batch size of 8 for 15k
iterations. For disentangled learning stage, we empirically
set p to 50%, the number of blendshapes k; and k; to 20,
and train for 60k iterations using the batch size 16. We sim-
ply use facial landmarks [5] to divide the face into upper
and lower parts and our dual-encoders share the same struc-
ture as previous works [24, 25]. We enforce the orthogonal-
ity of the blendshapes via QR decomposition. All training
stages are optimized using the AdamW [27] optimizer with

a learning rate of 3e-4.

Comparison Baselines. = We evaluate our proposed
DGTalker against recent 3DGS-based approaches, Gaus-
sianTalker [11] and TalkingGaussian [25]. To further
demonstrate that the success stems from our design rather
than the 3D-aware GAN, we also compare a method with
a similar concept, HFA-GP [2], and replace the EG3D [7]
used in the original paper with GGHead [22]. We refer to
the modified version as HFA-GP*. Moreover, we included
a classic NeRF-based approach, ER-NeRF [24], to provide
a more comprehensive set of comparisons.

4.2. Quantitative Evaluation

Comparison settings. To evaluate the 3D-aware recon-
struction quality and lip-audio synchronization ability, our
quantitative comparison contains three settings:

1) The self-reconstruction setting, where each of the
eight videos is split into training and test sets. The au-
dio, eye blink, and pose sequences from the unseen test
set are used to reconstruct the talking head in a self-driven
manner, following the same protocol as previous meth-
ods [11, 24, 25].

2) The novel-view self-reconstruction setting, where the
reconstruction and motion quality are evaluated under a
wider range of viewpoints, while the audio and eye blink
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Figure 5. We present two sets of visualizations, each rendered from five viewpoints—including a front view and four views gradually shifted
in yaw and pitch—under two different settings, respectively. The left-side images are generated under the novel-view self-reconstruction
setting, where the corresponding test set audio is used. The right-side images are produced under the generalized 3D-aware audio-lip
synchronization setting, using an unseen audio clip from SynObama [37] to demonstrate the audio generalization capability. The topmost

images show the ground-truth lip shapes.

sequences are still derived from the corresponding test set.
Specifically, we selected two extreme viewpoints with yaw
and pitch angles (£30°, +30°) and two shifted viewpoints
(£20°, £20°) from the canonical viewpoint. Additionally,
we incorporated a spiral camera trajectory to eliminate sus-
picion of cherry-picking.

3) The generalized 3D-aware audio-lip synchronization
setting, where we follow previous work using two un-
seen audio tracks, called test audio A and B, from Syn-
Obama [37] to drive the models. To further emphasize the
overall accuracy of audio-lip synchronization across multi-
views, we render the evaluation videos using a spiral camera
trajectory with a fixed eye blink signal.

For a fair comparison, we retrained all methods using
our camera parameters and rendered all heads onto a white
background and masked out the torso region to highlight the
performance of the algorithms.

Metrics and Measurements. In the aspect of image qual-
ity, we employ PSNR for the overall quality, LPIPS [46]
for high-frequency details, and SSIM [40] to evaluate face
structure. For dynamic motions, we utilize the landmark
distance (LMD) [9] and the confidence score (Sync-C) and
error distance (Sync-E) of SyncNet [12] for lip synchro-
nization. We also compute the Action Unit Error (AUE) by
estimating the action units [34] of the videos using Open-
Face [3, 4]. Additionally, we record the inference FPS to
evaluate real-time performance.

For the second setting, due to the absence of ground-truth
images, we employ Fréchet Inception Distance (FID) [17]
and Identity Similarity (IDSIM) derived from ArcFace [13]
to evaluate reconstruction quality and use AUE extracted
from GT video, non-comparison-based Sync-C and Sync-
E to evaluate motion quality. For the last setting, we only
employ Sync-C and Sync-E following [25].

Evaluation Results. We report the results of the three set-
tings in Tab.1, Tab.2 and Tab.3, respectively. In the self-
reconstruction setting, our method achieves the best qual-
ity in all image quality metrics. While TalkingGaussian
achieves the highest synchronization scores thanks to its
well-designed face and inside-mouth branches, its overall
performance is hindered by the insufficient number of Gaus-
sians. This limitation stems from the vanilla 3DGS recon-
struction system, which, in the absence of sufficient view-
points to provide facial structure priors, ultimately leads
to insufficient Gaussians and lower image quality. On the
other hand, HFA-GP* achieves higher image quality, it
overlooks the latent-audio unequal mapping problem, re-
sulting in lower synchronization scores.

In the novel-view self-reconstruction setting, we report
the average results over four specific viewpoints with yaw
(£30°,£20°) and pitch (£30°,£20°), along with a spiral
camera trajectory. While most methods achieve comparable
performance on frontal view rendering, all methods without
generative priors experience a significant performance drop
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Methods PSNRT LPIPS| SSIMT FID| | LMD| Sync-E| Sync-CT AUE] | FPS?T
Ground Truth N/A 0 1 o | o 6.859 8.468 0 | NA
ER-NeRF [24] 24.021 0.155 0810 75316 | 4.413 10.425 4.299 1.465 27
GaussianTalker [11]  26.727 0.127 0.854  24.157 | 4.386 9.915 5.207 1.432 83
TalkingGaussian [25]  26.249 0.094 0.847 21737 | 3.944 8.460 6.629 1.254 9%
HFA-GP* [2] 27.417 0.104 0.838 31215 | 4.558 11.483 2.469 1.842 75
Ours 28.943 0.065 0.863 15149 | 3.997 8.936 6.295 1209 | 71

Table 1. The quantitative results of the self-reconstruction setting. The best and second-best methods are in bold and underline, respectively.

Ours achieves the best image quality and competitive motion quality.

Methods FID | IDSIM 1 ‘ AUE | Sync-E| Sync-C1
Ground Truth 0 1 ‘ 0 6.859 8.468
ER-NeRF [24] 228.740 0.306 2.753 11.141 2.887
GaussianTalker [11] 138.332 0.337 2.601 10.785 3.773
TalkingGaussian [25]  137.914 0.363 2.621 9.624 5.198
HFA-GP* [2] 99.601 0.373 2.745 12.455 1.627
Ours 80.011 0.436 ‘ 2.525 9.565 5.255

Table 2. To provide a comprehensive evaluation, we test four spe-
cific viewpoints with yaw (£30°, £20°) and pitch (£30°, £20°),
along with a spiral camera trajectory, resulting in five viewpoint
configurations in total. We report the average performance across
these views. The best and second-best results are highlighted in
bold and underline, respectively. Our method achieves the highest
scores in both image quality and motion accuracy.

Method \ Test Audio A \ Test Audio B
| Sync-Ct Sync-E| | Sync-Ct  Sync-E |

Ground Truth ‘ 8.167 6.808 ‘ 8.080 7.182
ER-NeRF [24] 2.267 11.669 2.458 11.369
GaussianTalker [11] 3.242 10.903 1.557 12.476
TalkingGaussian [25] 3.922 10.528 3.999 10.202
HFA-GP* [2] 1.098 13.172 0.976 12.966
Ours ‘ 3.947 10.433 ‘ 4.069 10.106

Table 3. The quantitative results of the generalized 3D-aware
audio-lip synchronization setting. The best and second-best meth-
ods are in bold and underline, respectively. For an unseen audio
clip, our method achieves the highest score, indicating strong au-
dio generalization capability and ensuring motion accuracy across
multiple viewpoints.

as the viewing angle varies. Notably, although HFA-GP*
demonstrates promising results on novel-view reconstruc-
tion metrics (e.g., FID and IDSIM), it suffers from inferior
motion quality (SYNC-C) compared to other methods. In
contrast, our method achieves state-of-the-art performance
across all metrics. This underscores the effectiveness of our
approach, which benefits from our disentangled design and
training.

In the generalized 3D-aware audio-lip synchronization
setting, for an unseen audio clip, we perform a holistic eval-
uation of generalization by rendering with a spiral camera

trajectory. This setup not only emphasizes motion accuracy

but also highlights 3D consistency. Our method achieves
the highest scores, demonstrating not only strong general-
ization to novel audio but also robust 3D consistency across
a wide range of viewpoints.

4.3. Qualitative Evaluation

We first present key frames from a reconstructed sequence
under the self-reconstruction setting, along with detailed
views of four subjects used in prior work in Fig. 4. While
TalkingGaussian achieves accurate lip motion by explicitly
decoupling the facial region and the inside-mouth compo-
nents, the results on the “Shaheen” example on the right
shows hole-like artifacts when the test set includes large
motion which is not covered in the training set. Besides,
both GaussianTalker and TalkingGaussian still face chal-
lenges in capturing fine-grained details due to insufficient
Gaussians, steming from the vanilla 3DGS reconstruction
method. As for HFA-GP* which also utilize generative
priors, we observe that the “Obama” sequence on the left
clearly demonstrates that HFA-GP* exhibits limited mouth
movement. This is primarily due to its failure to effectively
correlate audio with the latent space. In addition, despite
employing the same backbone, HFA-GP* still exhibits poor
visual quality due to the lack of consideration to disentan-
gle identity from the latent space. In contrast, our approach
achieves superior visual quality and motion synchronization
performance.

Fig. 5 illustrates examples of the novel-view self-
reconstruction setting and the generalized 3D-aware audio-
lip synchronization setting. We present five viewpoint con-
figurations for qualitative evaluation: one frontal view and
four shifted views. All previous 3DGS-based methods suf-
fer from significant performance degradation when render-
ing from camera angles far from the canonical front view,
often exhibiting inconsistent geometry and color artifacts.
Although HFA-GP* demonstrates the capability to capture
correct head geometry, it struggles to find the optimal solu-
tion in the latent space, resulting in inaccurate motion and
color. Our method achieves superior visual quality and mo-
tion accuracy across multi-views.
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Figure 6. We selected two examples each from the expression
blendshapes and the lip blendshapes. The first two rows illustrate
the expression blendshapes, while the last two rows present the lip
blendshapes. In each row, as the blendshape coefficient varies, the
corresponding facial region undergoes noticeable changes.

4.4. Analysis and Ablation Study

Method PSNRT LPIPS| FID| LMD| Sync?
Ground Truth N/A 0 0 0 8.468
w/o Disentangled Design ~ 27.741 0.101 19.951  4.547 3.869
w/o Dual-Encoders 28.473 0.073 16.208  4.127  5.870
w/o Blendshapes 28.868 0.070 15.156  4.191 6.189
w/o MCS 28.559 0.072 15742 4551 4.547
All 28.943 0.065 15.149 3997  6.295

Table 4. Ablation study of each component under the self-
reconstruction setting. The complete result(All) are highlighted
in bold for better reference.

To demonstrate the effectiveness of our contributions,
we analyze the visualization results of key components and
conduct an ablation study under the self-reconstruction set-
ting using all eight identities.

Visualization of Disentangled Blendshapes. Fig. 6
presents the visualization of the learned blendshapes. Each
blendshape carries well-defined semantic meaning. As the
coefficients vary, the upper-face changes in the talking ex-
pression blendshapes, while the lower-face changes in the
lip blendshapes. This demonstrates the effectiveness and
disentanglement of our two sets of blendshapes.
Effectiveness of MCS. We also present the visualization
results of a learned blendshape obtained without employing
MCS in Fig.7. In the first row, without MCS, the learned lip
blendshape entangles both the upper-face expression and lip
motion. In contrast, in the second row, the lip blendshape
captures only the variations specific to the lips.

Ablation Study. We also conducted quantitative ablation

without MCS

with MCS

Figure 7. Visualizations of a set of lip blendshapes trained with
and without MCS. In the first row, without MCS, the results ex-
hibit an entangled representation. In contrast, the second row, with
MCS applied, captures only the lip motion while preserving a con-
sistent expression.

studies, as presented in Tab. 4. First, we conducted exper-
iments without the disentangled design, employing a sin-
gle encoder, a canonical code, and a unified blendshape set
without MCS to demonstrate the importance of latent space
disentanglement. Next, we removed the dual-encoder archi-
tecture and replaced it with a single encoder that simultane-
ously regresses both expression and lip blendshape coeffi-
cients with MCS. Subsequently, we eliminated the blend-
shapes, requiring the audio to directly regress two orthog-
onal deformation vectors. Both variants highlight the ef-
fectiveness of promoting disentangled training. Finally, we
also quantitatively presented the results of training without
MCS to further underscore its importance in achieving dis-
entangled learning.

5. Conclusion

In this work, we introduce DGTalker, a novel framework
leveraging Gaussian generative priors for real-time, high-
fidelity audio-driven Gaussian talking head synthesis. To
address the challenge of the unequal mapping between
the latent space and audio, we propose a disentangled la-
tent space navigation method by decomposing the high-
dimensional latent vector into a canonical vector, an expres-
sion vector, and a lip vector, and employing a dual-encoder
architecture aligned with corresponding blendshapes. Fur-
thermore,we introduce an effective mask cross-view super-
vision mechanism to achieve the disentangled learning. We
conduct extensive experiments that not only demonstrate
superior performance over existing methods in both quan-
titative and qualitative evaluations, but also showcase re-
markable controllability.
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